Weighted Tree-Numbers of Matroid Complexes

نویسندگان

  • Woong Kook
  • Kang-Ju Lee
چکیده

We give a new formula for the weighted high-dimensional tree-numbers of matroid complexes. This formula is derived from our result that the spectra of the weighted combinatorial Laplacians of matroid complexes consist of polynomials in the weights. In the formula, Crapo’s β-invariant appears as the key factor relating weighted combinatorial Laplacians and weighted tree-numbers for matroid complexes. Résumé. Nous présentons une nouvelle formule pour les nombres d’arbres pondérés de grande dimension des matroı̈des complexes. Cette formule est dérivée du résultat que le spectre des Laplaciens combinatoires pondérés des matroı̈des complexes sont des polynômes à plusieurs variables. Dans la formule, le β-invariant de Crapo apparaı̂t comme étant le facteur clé reliant les Laplaciens combinatoires pondérés et les nombres d’arbres pondérés des matroı̈des complexes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Weighted Cellular Matrix-tree Theorem, with Applications to Complete Colorful and Cubical Complexes

We present a version of the weighted cellular matrix-tree theorem that is suitable for calculating explicit generating functions for spanning trees of highly structured families of simplicial and cell complexes. We apply the result to give weighted generalizations of the tree enumeration formulas of Adin for complete colorful complexes, and of Duval, Klivans and Martin for skeleta of hypercubes...

متن کامل

Greedy algorithms and poset matroids

We generalize the matroid-theoretic approach to greedy algorithms to the setting of poset matroids, in the sense of Barnabei, Nicoletti and Pezzoli (1998) [BNP]. We illustrate our result by providing a generalization of Kruskal algorithm (which finds a minimum spanning subtree of a weighted graph) to abstract simplicial complexes.

متن کامل

Two Decompositions in Topological Combinatorics with Applications to Matroid Complexes

This paper introduces two new decomposition techniques which are related to the classical notion of shellability of simplicial complexes, and uses the existence of these decompositions to deduce certain numerical properties for an associated enumerative invariant. First, we introduce the notion of M-shellability, which is a generalization to pure posets of the property of shellability of simpli...

متن کامل

Matroid Representation of Clique Complexes

In this paper, we approach the quality of a greedy algorithm for the maximum weighted clique problem from the viewpoint of matroid theory. More precisely, we consider the clique complex of a graph (the collection of all cliques of the graph) which is also called a flag complex, and investigate the minimum number k such that the clique complex of a given graph can be represented as the intersect...

متن کامل

. A C ] 1 2 A ug 2 00 3 GENERIC COHEN - MACAULAY MONOMIAL IDEALS

Given a simplicial complex, it is easy to construct a generic deformation of its Stanley-Reisner ideal. The main question under investigation in this paper is how to characterize the simplicial complexes such that their Stanley-Reisner ideals have Cohen-Macaulay generic deformations. Algorithms are presented to construct such deformations for matroid complexes, shifted complexes, and tree compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015